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ABSTRACT 

 

The decline of local newspapers has led to the emergence of news deserts – areas lacking access 

to critical local information – posing a threat to community engagement and democracy. This 

study aims to predict which U.S. counties are most at risk of becoming news deserts by 

developing machine learning models based on socioeconomic, geographic, and circulation data. 

Addressing class imbalance and data noise, we employed classifiers such as Logistic Regression, 

Random Forest, XGBoost, Support Vector Machines, K-Nearest Neighbors, and Naive Bayes, 

combined with resampling techniques like SMOTE, Tomek Links, SMOTETomek, 

SMOTEENN, and ADASYN. Our analysis found that XGBoost combined with ADASYN 

performed best, achieving an F2-Score of 0.486 and AUC-PR of 0.467 on test data. These results 

provide valuable insights for policymakers aiming to develop targeted interventions to preserve 

local media ecosystems and strengthen democratic processes. 

 

 

 



INTRODUCTION 

 

The emergence of news deserts – communities with limited or no access to reliable, 

comprehensive local news – has raised significant concerns about the health of democracy and 

community engagement in the United States (Franklin, 2014; Abernathy, 2018). The decline of 

local newspapers, often attributed to economic pressures, shifts in advertising revenue, and the 

rise of digital media platforms, has left a substantial portion of the population without essential 

information sources (Ali, 2017; Abernathy & Franklin, 2022). Estimates suggest that nearly one-

fifth of the country's population resides in news deserts (Abernathy, 2020), highlighting the 

urgency of addressing this issue. 

While existing research has mapped current news deserts and identified correlating 

factors (Napoli et al., 2018; Hindman, 2018; Stonebely, 2023), there is a gap in predictive 

modeling to anticipate future at-risk areas. This study aims to fill that gap by developing a 

predictive model to identify U.S. counties at high risk of becoming news deserts. Leveraging 

machine learning algorithms and incorporating socioeconomic variables along with spatial 

neighbor data, we seek to provide a proactive tool for stakeholders to identify, intervene, and 

support local journalism in vulnerable communities. 

 

 

 

 

 



METHODOLOGY & DATA 

 

An important consideration in our methodology is the imbalanced nature of the overall 

dataset from where we create the training model - meaning our data has a far higher number of 

non-news desert counties, and thus more of their attributes, as compared to news deserts. 

Classification algorithms, however, focus on the well-represented, or majority class, traditionally 

(Sawangarreerak & Thanathamathee, 2020). To rectify the class imbalance problem, we use 

different resampling methods: ADASYN, oversampling using Synthetic Minority Over-sampling 

Technique (SMOTE), undersampling using Tomek links, and combine both (SMOTE + Tomek) 

methods. The different classification models employed are retrained on the resampled training 

data, which then enables them to find patterns and relationships in the test data with an adjusted 

focus due to the newly synthesized minority class instances. This helps in improving the models' 

ability to classify minority class instances correctly. 

Our news data is obtained from the 'State of Local News' report published in 2022 

(Abernathy & Franklin, 2022). The second part of our method incorporates county-level 

metadata, and we use Federal Information Processing Standard code (FIPS) to anchor counties 

without any local news outlets in our dataset. Once we specifically map all news deserts using 

FIPS codes, it enables us to expand our analysis to utilize several different open datasets with 

different information. Broadly, the data we look at are population, race, age, educational 

attainment, median household income, broadband access, voting, and county GDP. We obtain the 

information from different datasets, including the ACS 5-year Census data, MIT Election Data, 

USDA Economic Research Service, and the U.S. Bureau of Economic Analysis. 



Missing values can bias machine learning models and degrade predictive performance 

(Little & Rubin, 2019). In this study, missing values in the socioeconomic variables were 

imputed using the median imputation strategy. The median is robust to outliers and provides a 

central tendency measure that is less affected by skewed data distributions (Gelman et al., 2013). 

Formally, for a variable X with missing entries, each missing value Xi is replaced by the median 

X-bar of the observed values: 

Xi = X-bar if Xi is missing 

A news desert label is based on there being no local newspapers in circulation at the 

county level. The target variable Yi, news desert county, is defined as: 

𝑌𝑖 =  {

1 𝑖𝑓 𝑐𝑜𝑢𝑛𝑡𝑦 𝑖𝑠 𝑎 𝑛𝑒𝑤𝑠 𝑑𝑒𝑠𝑒𝑟𝑡

⬚
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

⬚

 

To capture the complex interplay between socioeconomic factors, we also use two 

interaction terms:  

Population Density x GDP,  

Income x Broadband.  

These interaction terms help model non-linear relationships and interactions between 

variables, which are essential in capturing the multifaceted nature of news desert formation.  

For a given county i, the population-weighted average of a socio-economic feature x from 

its neighboring counties Ni is: 

 



 

𝑥neighbor_avg
(𝑖)

=
∑ 𝑥(𝑗)

𝑗∈𝑁(𝑖) ⋅ 𝑃(𝑗)

∑ 𝑃(𝑗)𝑗∈𝑁(𝑖)
 

where: 

• x(j) is the value of a given feature x in neighboring county j, 

• P(j) is the total population of county j, 

• Ni is the set of neighboring counties of county i. 

This allows us to incorporate the influence of neighboring counties' socio-economic 

conditions on the local news environment of any given county i. 

 

 

 

 

 

 

 

 



RESULTS 

 

An initial evaluation using 5-fold stratified cross-validation revealed that the XGBoost 

classifier combined with the SMOTEENN resampling technique achieved the highest mean F2-

score of 0.491. The Random Forest classifier (with SMOTEENN) and XGBoost (with SMOTE) 

also demonstrated solid performance, with a mean F2-score of 0.439 and 0.435 respectively. 

Table 1 displays the five highest F2-scores obtained after cross-validation. 

While the XGBoost model with SMOTEENN achieved the highest cross-validation F2-

score, cross-validation performance does not always guarantee the best performance on unseen 

data due to potential overfitting or variance in data distribution (Browne, 2000). Therefore, we 

evaluate the models on the test set to determine their generalization capabilities overall. Once 

this step concluded, we found that the XGBoost classifier with ADASYN resampling achieved 

the best balance of metrics: the highest F2-score of 0.485, a recall of 0.488, and a precision of 

0.476, demonstrating its effectiveness in identifying at-risk counties while maintaining a balance 

between precision and recall (see Tables 2 - 7). In contrast, models like Logistic Regression 

performed less effectively despite resampling, due to their inability to capture non-linear 

relationships without extensive feature engineering. The superior performance of ensemble 

methods like XGBoost and Random Forest indicates the importance of capturing complex 

patterns in the data. 

Receiver Operating Characteristic (ROC) curves and Precision-Recall (PR) curves are 

plotted to visualize the models' discriminative abilities. The XGBoost model with ADASYN 

demonstrated favorable performance, with an ROC-AUC of 0.86 and an AUC-PR of 0.47 (see 



Figure 1 and 2). These curves reinforce the model's capability to distinguish between at-risk and 

non-at-risk counties effectively.  We also generate confusion matrices for each combination of 

classifier and resampling method (a few examples Table 8 - 15). The matrices provide more 

substantive insights into the number of true positives, false positives, true negatives, and false 

negatives for each model, allowing us to assess how well each classifier distinguishes between 

counties at-risk that are news deserts and non-news deserts. 

Focusing on our initial hypothesis RQ1 and RQ2, our study demonstrates that advanced 

machine learning techniques can effectively predict at-risk counties even in the presence of 

significant class imbalance. The utilization of ensemble methods capable of capturing complex, 

nonlinear relationships among different socioeconomic variables enhances predictive accuracy 

and utilization of various resampling techniques further improved model performance, allowing 

the model to learn the underlying patterns more effectively. 

Resampling techniques, particularly ADASYN, also significantly improved the model's 

ability to identify at-risk counties by balancing the class distribution and focusing on difficult-to-

learn instances. The XGBoost classifier with ADASYN achieved the highest F2-score on the test 

data, indicating enhanced identification of news deserts while maintaining a balanced 

performance in terms of precision (0.476) and recall (0.488), which displays its effectiveness in 

handling imbalanced datasets. The model's approach demonstrates the practical utility of 

advanced machine learning models in handling geographically diverse datasets with imbalanced 

classes. 

For RQ3, we explored the effect of interaction terms and including socioeconomic 

characteristics from neighboring counties in addition to within-county features. We had also 

calculated population-weighted averages of socioeconomic variables from adjacent counties and 



incorporated these into our feature set. The feature importance analysis revealed that features like 

population density – GDP interaction, income – broadband interaction, average broadband access 

of neighboring counties, and average GOP vote percentage of neighboring counties were also 

important predictors. By integrating these influences, the model captured spatial patterns and 

dependencies, leading to improved predictive performance in modeling news desertification.  

An examination of the feature importances from the XGBoost model revealed that the 

interaction term ‘Population Density × GDP’ was the most significant predictor, accounting for 

approximately 19% of the model's decision-making process (see Table 16). This finding 

underscores the hypothesis that the combined effect of economic activity and population 

concentration critically influences the sustainability of local news outlets. Counties with low 

population density and GDP may lack the necessary advertising revenue and subscriber base to 

support local newspapers. The other top five features included: 

• Hispanic/Latino Population Percentage: Higher percentages correlate with increased risk, 

potentially due to historical underrepresentation and economic disparities in these 

communities; 

• GDP: Lower GDP values were associated with higher risk, emphasizing the role of 

economic vitality in sustaining local news outlets; 

• Broadband access: Limited broadband access emerged as a significant factor, 

underscoring the importance of digital infrastructure in modern news dissemination; 

• Population Density: Lower population densities were linked to higher at- risk counties, 

reflecting challenges in sustaining newspapers in sparsely populated areas; 

 



Using our best-performing XGBoost model with ADASYN, we also predicted 

probabilities for counties, currently not classified as news deserts, which are predicted to be at-

risk (Table 17). These high-risk counties typically share characteristics such as low population 

density, economic distress, limited broadband access, and higher percentages of minority 

populations.  

By addressing these research questions, this study contributes to a deeper understanding 

of the factors influencing news desertification and demonstrates the practical utility of machine 

learning models in informing policy interventions. The identification of these counties along 

with the relevant actionable insights can provide a platform for policymakers and stakeholders to 

implement targeted interventions to support local journalism in vulnerable areas, and, by 

extension, fortify the democratic process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tables & Figures 

 

Table 1: Cross – Validation Results  

 

Classifier Resampling Method F2-Score  

XGBoost SMOTEENN 0.491 

Random Forest SMOTEENN 0.439 

XGBoost Smote 0.436 

Random Forest None 0.43 

XGBoost ADASYN 0.428 

 

 

Table 2 

Model Resampling Accuracy Precision Recall F1-

Score 

F2-

Score 

ROC-AUC Average 

Precision 

(AUC-

PR) 

Logistic 

Regression 

None 0.933 0.667 0.049 0.091 0.060 0.751 0.273 

Logistic 

Regression 

Smote 0.666 0.115 0.585 0.193 0.323 0.736 0.279 

Logistic 

Regression 

ADASYN 0.644 0.116 0.634 0.195 0.334 0.734 0.245 

Logistic 

Regression 

SMOTETomek 0.666 0.115 0.585 0.193 0.323 0.737 0.282 

Logistic 

Regression 

SMOTEENN 0.522 0.106 0.805 0.187 0.347 0.730 0.231 

Logistic 

Regression 

Tomek Links 0.933 0.667 0.049 0.091 0.060 0.749 0.272 

 



 

Table 3 

 

Model Resampling Accuracy Precision Recall F1-

Score 

F2-

Score 

ROC-

AUC 

Average 

Precision 

(AUC-PR) 

Random 

Forest 

None 0.943 0.818 0.220 0.346 0.257 0.870 0.545 

Random 

Forest 

Smote 0.915 0.375 0.366 0.370 0.368 0.844 0.435 

Random 

Forest 

ADASYN 0.927 0.462 0.439 0.450 0.443 0.858 0.471 

Random 

Forest 

SMOTETomek 0.928 0.475 0.463 0.469 0.466 0.832 0.453 

Random 

Forest 

SMOTEENN 0.880 0.282 0.488 0.357 0.426 0.805 0.391 

Random 

Forest 

Tomek Links 0.942 0.714 0.244 0.364 0.281 0.864 0.530 

 

 

Table 4 

Model Resampling Accuracy Precision Recall F1-

Score 

F2-

Score 

ROC-AUC Average 

Precision 

(AUC-PR) 

XGBboost None 0.947 0.765 0.317 0.448 0.359 0.899 0.581 

XGBboost Smote 0.922 0.432 0.463 0.447 0.457 0.872 0.502 

XGBboost ADASYN 0.928 0.476 0.488 0.482 0.485 0.858 0.466 

XGBboost SMOTETomek 0.915 0.386 0.415 0.400 0.409 0.840 0.441 

XGBboost SMOTEENN 0.889 0.309 0.512 0.385 0.453 0.829 0.403 

XGBboost Tomek Links 0.953 0.842 0.390 0.533 0.437 0.888 0.632 

 

 



Table 5 

 

Model Resampling Accuracy Precision Recall F1-

Score 

F2-

Score 

ROC-AUC Average 

Precision 

(AUC-

PR) 

SVM (RBF 

Kernel) 

None 0.834 0.208 0.512 0.296 0.396 0.764 0.224 

SVM (RBF 

Kernel) 

Smote 0.779 0.152 0.488 0.231 0.338 0.711 0.232 

SVM (RBF 

Kernel) 

ADASYN 0.767 0.154 0.537 0.239 0.358 0.710 0.218 

SVM (RBF 

Kernel) 

SMOTETomek 0.779 0.152 0.488 0.231 0.338 0.712 0.233 

SVM (RBF 

Kernel) 

SMOTEENN 0.729 0.145 0.610 0.235 0.372 0.710 0.190 

SVM (RBF 

Kernel) 

Tomek Links 0.832 0.206 0.512 0.294 0.395 0.765 0.225 

 

 

Table 6 

Model Resampling Accuracy Precision Recall F1-

Score 

F2-

Score 

ROC-AUC Average 

Precision 

(AUC-

PR) 

KNN None 0.933 0.600 0.073 0.130 0.089 0.676 0.235 

KNN Smote 0.799 0.155 0.439 0.229 0.321 0.665 0.150 

KNN ADASYN 0.784 0.138 0.415 0.207 0.296 0.675 0.160 

KNN SMOTETomek 0.799 0.155 0.439 0.229 0.321 0.667 0.150 

KNN SMOTEENN 0.724 0.121 0.488 0.194 0.304 0.662 0.113 

KNN Tomek Links 0.933 0.600 0.073 0.130 0.089 0.674 0.230 

 



Table 7 

Model Resampling Accuracy Precision Recall F1-

Score 

F2-

Score 

ROC-AUC Average 

Precision 

(AUC-

PR) 

Naive 

Bayes 

None 0.271 0.079 0.902 0.145 0.291 0.676 0.154 

Naive 

Bayes 

Smote 0.290 0.080 0.902 0.148 0.296 0.665 0.148 

Naive 

Bayes 

ADASYN 0.283 0.080 0.902 0.147 0.295 0.656 0.143 

Naive 

Bayes 

SMOTETomek 0.288 0.080 0.902 0.147 0.296 0.665 0.148 

Naive 

Bayes 

SMOTEENN 0.286 0.080 0.902 0.147 0.296 0.667 0.142 

Naive 

Bayes 

Tomek Links 0.273 0.081 0.927 0.148 0.299 0.676 0.154 

 

 

Table 8 

Confusion Matrix for Logistic Regression with SMOTEENN Resampling  

Actual Predicted 

Negative Positive 

(Non-news desert) (News Desert) 

Negative (Non-news desert) 281 279 

Positive (News Desert) 8 33 

 

 

 



Table 9 

Confusion Matrix for Random Forest with SMOTETomek Resampling 

Actual Predicted 

Negative Positive 

(Non-news desert) (News Desert) 

Negative (Non-news desert) 539 21 

Positive (News Desert) 22 19 

 

 

Table 10 

Confusion Matrix for Random Forest with SMOTETomek Resampling 

Actual Predicted 

Negative Positive 

(Non-news desert) (News Desert) 

Negative (Non-news desert) 539 21 

Positive (News Desert) 22 19 

 

 

 

 



Table 11 

Confusion Matrix for XGBoost with ADASYN Resampling  

Actual Predicted 

Negative Positive 

(Non-news desert) (News Desert) 

Negative (Non-news desert) 538 22 

Positive (News Desert) 21 20 

 

 

 

Table 13 

Confusion Matrix for SVM (RBF Kernel) with Tomek Links Resampling  

Actual Predicted 

Negative Positive 

(Non-news desert) (News Desert) 

Negative (Non-news desert) 479 81 

Positive (News Desert) 20 21 

 

 

 



Table 14 

Confusion Matrix for KNN with SMOTETomek Resampling  

Actual Predicted 

Negative Positive 

(Non-news desert) (News Desert) 

Negative (Non-news desert) 462 98 

Positive (News Desert) 23 18 

 

 

Table 15 

Confusion Matrix for Naive Bayes without Resampling  

Actual Predicted 

Negative Positive 

(Non-news desert) (News Desert) 

Negative (Non-news desert) 126 434 

Positive (News Desert) 4 37 

 

 

 

 



Table 16 

Feature Importance 

Population Density * GDP 0.194492 

Hispanic/Latino 0.101181 

GDP (USD) 0.073908 

Broadband Access 0.045534 

Population Density (Per Sq. Mile) 0.044036 

Black (Neighboring County Average) 0.042858 

Median HH Income * Broadband 0.042379 

GDP (Neighboring County Average) 0.040427 

Political Affiliation (GOP) 0.040286 

Age 65+ (Neighboring County Average) 0.03915 

Broadband Access (Neighboring County Average) 0.038789 

Age 65+ 0.038114 

Black 0.03733 

Political Affiliation GOP (Neighboring County Average) 0.035725 

Median HH Income (Neighboring County Average) 0.035059 

Median Household Income 0.033871 

Bachelor's Degree (Neighboring County Average) 0.033841 

Bachelor's Degree (Pct) 0.031365 

Hispanic/Latino (Neighboring County Average) 0.028391 

Population Density (Neighboring County Average) 0.023266 

 



Table 17 

 

FIPS County State County At-Risk Probability 

48137 Edwards TX 0.995 

51079 Greene VA 0.971 

46007 Bennett SD 0.97 

24029 Kent MD 0.964 

16077 Power ID 0.948 

19087 Henry IA 0.947 

13167 Johnson GA 0.923 

37177 Tyrrell NC 0.904 

29135 Moniteau MO 0.903 

35047 Sandoval NM 0.894 

 

XGBoost – ADASYN model prediction of top ten counties at-risk  

 

 

 

 

 

 



 

Figure 1 

 

 

 

 

 

 



 

Figure 2 
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