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ABSTRACT
This study offers an initial evaluation of a human-in-the-loop sys-
tem leveragingGPT-4 (a large languagemodel or LLM), and Retrieval-
Augmented Generation (RAG) to identify and define jargon terms
in scientific abstracts, based on readers’ self-reported knowledge.
The system achieves fairly high recall in identifying jargon and
preserves relative differences in readers’ jargon identification, sug-
gesting personalization as a feasible use-case for LLMs to support
sense-making of complex information. Surprisingly, using only
abstracts for context to generate definitions yields slightly more ac-
curate and higher quality definitions than using RAG-based context
from the fulltext of an article. The findings highlight the potential
of generative AI for assisting science reporters, and can inform
future work on developing tools to simplify dense documents.
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1 INTRODUCTION
Science reporters play a crucial role in translating complex scien-
tific information for the public, helping readers make informed
decisions, supporting watchdogging activities, and advocating for
policy change. However, reporters face significant challenges when
sourcing stories from various repositories of information, such as
from field experts, journal articles, press releases, and social media.
One of the main hurdles is making sense of complex terms and
information when first encountering a potentially newsworthy sci-
entific article or preprint. Even experienced reporters may struggle
with scientific jargon that requires significant time and effort to
comprehend within a given article’s context. While press releases
can aid understanding, they may also exaggerate results [11]. Field
experts can help simplify and verify information but may be time-
constrained [1], making it difficult for reporters to involve them
early in the story identification process. In fact, recent work has
distinctly surfaced the need for tools to support sense-making of
complex information, especially for science journalists engaged in
newsgathering [7, 8].

Generative AI models, such as large language models (LLMs),
present a potential solution to this challenge. These models can
generate plausible text from user-provided prompts, and techniques
like Retrieval-Augmented Generation (RAG) enable generated text
to be grounded in the source material [6], without the need for
domain-specific training data or fine-tuning. Instead, RAG relies
on an extra step of knowledge retrieval from the source document
during text generation. We hypothesize that a system leveraging
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these capabilities could help reporters understand scientific jargon
more efficiently and reliably.

In this pilot study, we conduct an initial evaluation of such a
system that leverages LLMs with RAG to assist readers in under-
standing jargon within the context of a potentially newsworthy
scientific article. All abstracts and jargon terms are in the English
language. Specifically, we prototype this as a human-in-the-loop
system that aims to:

• Identify complex jargon from scientific abstracts based on the
reader’s self-reported knowledge, personalizing the results.

• Generate a short, accessible definition for each jargon term.
OpenAI’s GPT-4 is used to identify jargon terms and generate

definitions, and we specifically use RAG to ground the generated
definitions in the context of the abstract or fulltext of the scientific
article. The prompts are also designed to personalize the identifica-
tion jargon terms, based on the subject-matter expertise of a reader.
Our approach is part of a larger trend in identifying and defining
jargon, often by means of personalization or via novel language
models, but most prior work has been directed toward scientists
or lay-readers [3–5, 10]. The purpose of our prototype is to reflect
on the potential of using generative AI for science journalists in
particular, and to inform the development of a full-fledged system
for these users in the future.

In our evaluation study, we sample arXiv preprints (n=64) to
assess the performance of our LLM-based system. We measure
the count, precision, and recall of the personalized jargon terms
identified by the LLM, comparing them to jargon terms manually
annotated by the first two authors based on their experience reading
and understanding the preprints. The annotators also evaluate the
accuracy and quality of the LLM-generated jargon definitions by
conducting pairwise comparisons between two methods of provid-
ing background context to GPT-4 – using RAG to retrieve context
from fulltext, versus simply relying on the abstract to provide con-
text. To illustrate the envisioned use case for this technology, we
develop a basic user interface that links scientific abstracts to their
respective jargon definitions.

The findings offer preliminary insights into how GPT-4 identi-
fies, personalizes, and defines jargon terms. The model tends to
overpredict jargon terms regardless of the reader’s expertise (i.e.,
of the annotators in the study), but offers fairly high recall of the
actual jargon terms the readers identified (median recall=0.68). It
also preserves the relative differences in how the readers identify
jargon, suggesting that personalization is a viable pursuit for LLM
tools to support sense-making. For jargon definitions themselves,
GPT-4 using only the abstract performs slightly better than GPT-4
with RAG-based context from the fulltext in both accuracy and
overall quality. The varying patterns in which approach tends to
appeal to which reader indicates that readers’ subject-matter exper-
tise may influence how they perceive and evaluate definitions. This
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suggests a need to explore methods to determine when a jargon
term might require lookup within the fulltext or not, and based on
the level of detail a given reader is looking for (e.g., this may vary
depending on the nature of the story being written by a reporter).
The choice of relying on RAG vs. abstracts also has repercussions
for the computational costs of such tools in newsrooms.

Based on this initial pilot, we identify questions and directions
for future work in the discussion. An external evaluation with
professional reporters is necessary to assess the efficacy of this
system in practice, but these preliminary insights can inform the
design future prototypes for human-centered evaluation, and serve
as a resource for other practitioners and researchers working on
similar systems in their own newsrooms. By sharing our findings,
we aim to contribute to the collective effort of experimenting with
generative AI tools that support journalism. Our code and the
relevant data can be found online1.

2 METHODS
This section describes our approach to collecting data from arXiv,
personalizing jargon identification, generating jargon definitions,
and evaluating the results.

2.1 Data Collection
We limited our focus to de-jargonizing scientific abstracts in arXiv
Computer Science2 published or updated in March 2024, and from
three sub-categories: Artificial Intelligence (cs.AI), Human-Computer
Interaction (cs.HC), and Computers and Society (cs.CY). Given the
current popularity of these sub-categories in both public discourse
and scientific research, we believed they could provide illustrative
examples to evaluate the proposed RAG system. To this we added
another constraint: we collected all peer-reviewed preprints3, which
were likely to be fairly credible and well-written. This surfaced a
set of 254 articles, mostly from cs.HC (116) or cs.AI (102), with a
handful from cs.CY (36). To maintain this sub-category distribution
while accommodating resource constraints in terms of availability
of annotators, we sampled 25% of this dataset, resulting in a final
test sample of 64 articles (cs.HC: 29, cs.AI: 26, cs.CY: 9). Preprints
not included in our final sample were maintained separately as a
development corpus for refining LLM prompts and parameters.

2.2 Personalizing Jargon Identification
For the test sample, the two annotators independently annotated 5
abstracts for jargon terms that were difficult to understand or infer
from the context and generally impeded their comprehension of
the work. Subsequently, we engaged in a discussion to establish a
shared understanding of what constituted jargon for each annotator.
The annotators agreed to rely solely on the abstracts for identify-
ing jargon, and allowed for n-grams to identify complex concepts
that were hard to understand (e.g., annotating "Lagrangian-guided
Monte Carlo tree search" instead of just "Lagrangian" or "Monte
Carlo"). The annotators will be referred to as rid0 and rid1 for the
rest of this paper, based on the IDs allocated to them during data
analysis.

1https://github.com/ericlee878/ScienceDeJargonizer
2https://arxiv.org/archive/cs
3This is self-reported by authors in the comments field in arXiv metadata.

We used OpenAI’s GPT-4 to identify jargon terms tailored to
the annotators’ self-reported scientific expertise in AI, HCI, and
Computer Science. Personalizing jargon identification based on
readers’ varying levels of scientific knowledge can enhance the
reading experience and help readers manage their attention more
effectively. Prior research on using LLMs and in-context learning
to personalize jargon identification for scientists showed that pro-
viding metadata about readers’ self-identified areas of expertise,
citation counts, year of first published paper, and other details could
successfully aid in identifying jargon terms [3].

We adapted these findings into prompt templates suitable for
non-scientists by describing annotators’ experiences (e.g., "regu-
larly reads and writes about . . . ", "has taken university classes in
. . . ") and self-reported ratings of expertise (e.g., "3/5, where 5 implies
. . . ") before prompting the model to identify jargon in a given ab-
stract. Informal pilots for refining prompts and parameters showed
that describing experiences worked more consistently than using
ratings or a combination of the two. For future iterations with re-
porters, we will also explore providing more granular metadata to
the model, such as random samples of their written stories, book-
marked and/or read scientific papers, or systematically solicited
descriptions of topical knowledge, to further improve personaliza-
tion. The annotator descriptions and model parameters for this task
can be found in Appendix A.1.

GPT-4’s suggestions were validated against human annotations
using precision, recall, and F2 scores. F2 scores emphasize recall
over precision, and were chosen because we believed that higher
recall was preferable for an enhanced reading experience, i.e., iden-
tifying as many jargon terms as possible from the ground-truth and
reducing false negatives.

2.3 Generating Jargon Definitions
We used OpenAI’s GPT-4, reinforced with Retrieval-Augmented
Generation (RAG)4 to generate definitions of jargon terms identi-
fied by the human annotators. RAG improves language models by
integrating a knowledge retrieval step during text generation. It
finds contextually relevant snippets from an external corpus (e.g.,
the fulltext of an arXiv CS preprint) using cosine similarity, aug-
ments the input prompt (e.g., the jargon term to be defined) with
the retrieved information, and generates responses grounded in
that context with the goal of producing more accurate and informed
responses.

We tested different system prompts for the RAG-based approach;
query prompts for definitions; and cosine similarity thresholds
for retrieving jargon terms from the fulltext in RAG. We chose a
cosine similarity threshold of 0.3 for the retrieval step in RAG to
surface a wider range of relevant chunks, while still excluding com-
pletely irrelevant text. For a jargon term like "Lagrangian-guided
Monte Carlo tree search", this threshold allowed for the retrieval
of chunks containing "Lagrangian", "Monte Carlo", or "tree search",
as well as slightly modified versions such as "Monte Carlo search"
or "Lagrangian-guided search". We also computed baseline jargon
definitions using only the abstract as context, in contrast to the
RAG approach that retrieves context from the fulltext. This allows

4Setup using the llama-index framework: https://docs.llamaindex.ai/en/stable/

https://github.com/ericlee878/ScienceDeJargonizer
https://arxiv.org/archive/cs
https://docs.llamaindex.ai/en/stable/
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Figure 1: Distribution of jargon terms identified per abstract
by human annotators (left) andGPT-4 (right). The probability
density plots illustrate how frequently each count of jargon
terms is observed. While GPT-4 tends to overestimate the
number of jargon terms, it still captures the relative differ-
ences between annotators.

us to compare the effectiveness and computational efficiency of us-
ing limited context versus the entire preprint for generating jargon
definitions5. Appendix A.2 lists the relevant model parameters.

Drawing from prior work that highlights the higher consistency
of pairwise comparisons (relative to absolute ratings) for evaluating
the outputs of text generation systems [9], and popular leaderboards
like Chatbot Arena [2] that implement these recommendations, we
evaluated the two approaches using a combination of absolute and
relative metrics.

Annotators first assessed each definition’s individual accuracy
based on the claims made in the context of a given paper. They
then evaluated the relative quality of each definition through
pairwise comparisons, considering its understandability and useful-
ness in interpreting the jargon term within the abstract. For each
jargon term, annotators expressed their preference between the
RAG-generated and abstract-only definitions, with the option to
indicate a tie. Sources of the definitions were anonymized and the
order was randomized to prevent biases.

We calculated the percentage of correct and incorrect defini-
tions for each approach to gauge their overall accuracy. We also
determined the percentage of "wins" for each method in the pair-
wise quality comparisons, similar to the Elo rating system used in
the aforementioned Chatbot Arena. This win percentage provides
insight into the relative performance of the two approaches, indi-
cating which one tends to generate more preferred definitions in
terms of quality.

3 FINDINGS
3.1 Personalizing Jargon Identification
We find that GPT-4 consistently identifies a higher number of
jargon terms compared to human annotators, with a median
of 4 extra terms for rid0 and 5 extra terms for rid1. Wilcoxon
signed-rank tests reveal that these differences are significant (p <
0.01) across the entire dataset and for the individual annotators.

5We also piloted GPT-4 with no context and found its performance to be significantly
worse, making a full evaluation unnecessary.

One might question if this difference stems from lexical varia-
tion in how jargon is identified, i.e., if each individual jargon term
identified by a human annotator encompasses more words than
those identified by GPT-4. However, the actual number of words
within the jargon terms identified by human annotators and
GPT-4 are not largely different. In fact, GPT-4 identifies slightly
longer jargon terms, with a mean difference of 0.3 more words per
jargon term compared to human annotators (Mann-Whitney U test;
p < 0.01), suggesting that the difference in jargon term count is not
due to a systematic difference in jargon term length. Instead, GPT-4
simply tends to suggest a high number of jargon terms, further
evidenced by the fact that it never predicts an empty set of
jargon terms for any abstract, whereas the human annotators
occasionally do so. While this overprediction may create a more
noisy reading experience for advanced readers, it may potentially
benefit less experienced reporters who are still learning about the
technical specifics of the domains they cover.

Figure 1 shows the probability density of jargon terms identified
per abstract by human annotators (left panel) and GPT-4 (right
panel). The probability density represents the likelihood of observ-
ing a certain number of jargon terms across different abstracts,
providing insight into the distribution rather than just raw counts.
For example, the peaks around 1 (blue, rid0) and 3 (red, rid1) in
the left panel indicate that most human annotations cluster around
those values for each annotator. Despite GPT-4 tending to overesti-
mate the count for both annotators, as seen in the right panel, it
still maintains the relative difference between annotators. Specif-
ically, rid1 (red) consistently identifies more jargon terms than
rid0 (blue), which is reflected in both human and GPT-4 predic-
tions. This supports the idea that GPT-4 could capture individual
patterns of term identification based on personalized prompting.

Moreover, when human annotators do identify jargon terms,
GPT-4 achieves a high median recall of 0.68 (0.83 for rid0 and
0.66 for rid1), and thus successfully captures a substantial
proportion of the human-identified jargon terms. However,
as expected based on the patterns of over-prediction, the precision
is substantially lower for both annotators at a median of 0.33 (0.33
for rid0 and 0.27 for rid1). This results in a median F2 score of
0.55 (0.57 for rid0 and 0.53 for rid1). In cases of very low precision
(<=0.15, n=20), we find that GPT-4 identifies more jargon than its
median, while human annotators identify less, but no clear patterns
emerge from qualitative examination of the abstract and jargon
terms themselves. A larger sample may be necessary to discern the
causes of this mismatch.

3.2 Generating Jargon Definitions
We evaluated the accuracy of RAG-based and abstract-based def-
initions for jargon terms identified by two annotators (n=121 for
rid0, n=236 for rid1). Since accuracy is an objective metric and
not dependent on individual annotators, we examined it at the
aggregate-level across both annotators.

Surprisingly, the abstract-based approach achieved a slightly
higher percentage of accurate responses at 96.6%, compared
to the RAG-based approach, which had an accuracy of 93.5%. This
is counter-intuitive, as one might expect the RAG-based approach,
which draws and contextualizes from the fulltext, to provide more
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Table 1: Win, loss, and tie percentages in quality of the RAG-
based definitions vs. the abstract-based definitions. Higher
win %-ages are bolded.

Annotator ID Model Win % Loss % Tie %

rid0 RAG-based 38.6 % 37.7 % 23.7 %
Abstract-based 39.4 % 35.8 % 24.8 %

rid1 RAG-based 22.0 % 22.9 % 55.0 %
Abstract-based 24.1 % 21.4 % 54.5 %

Overall RAG-based 27.8 % 28.0 % 44.3 %
Abstract-based 29.2% 21.4 % 54.5 %

accurate definitions. However, it seems that abstracts contain suffi-
cient context to accurately define jargon terms, while the additional
information from the fulltext may introduce noise or irrelevant
details, slightly reducing the RAG-based approach’s accuracy.

The RAG-based approach also occasionally failed to provide
definitions for some terms (2.5%), when no snippets of the full-
text met the cosine similarity threshold (0.2) in the retrieval step.
This thresholding strategy, intended to reduce inaccurate re-
sponses, did not seem to prove as effective.

The 3-4% inaccuracy in both approaches (n=12 for abstract-based;
n=14 for RAG-based) is concerning. For n=7 terms, both approaches
return incorrect responses, misinterpreting specific terms as general
concepts (e.g., "CodeContests", a benchmark dataset, incorrectly
explained to refer to "code contests" as an event). This suggests a
need for mechanisms to override GPT-4’s tendency to rely on latent
word associations and focus on the context provided by the paper,
especially when RAG actually surfaces pertinent snippets.

The quality evaluation also reveals a more nuanced picture than
expected. Table 1 shows that the abstract-based model slightly
outperforms the RAG-based model for both annotators (by 1-2
percentage points in win percentage), suggesting that using only
the abstract might be as effective as using the fulltext with a
RAG approach for generating informative definitions. This
is a little counter-intuitive, as one would expect the extra context
around a jargon term to contribute to its informativeness. Again,
the potential noise introduced through RAG might be reducing
quality, but a fuller, qualitative evaluation is needed to confirm this.

Interestingly, the high percentage of ties for rid1 (54-55%) com-
pared to rid0 (24-25%) also suggests that individual differences in
subject matter familiarity may influence evaluation criteria.
This may also apply to science reporters with varying levels of
expertise, who might find different value in abstract-based or RAG-
based (and potentially more dense) definitions. Further qualitative
evaluation is necessary to understand these differences tangibly.

Figure 2 also shows a prototype user interface (UI) for this system,
wherein a user selects arXiv CS sub-categories of interest, and
optionally enters some search terms, to then browse through the
relevant set of abstracts, with jargon terms personalized to the user
and definitions offered below the abstract for easy reference.

Figure 2: Prototype UI displaying a search bar, filter options,
and preprint abstract metadata. Users can hover over specific
jargon terms, or scroll through a clickable list to see defi-
nitions. Readers can explore the interactive version of the
prototype via the linked GitHub repository.

4 DISCUSSION AND CONCLUSION
In summary, this analysis offers preliminary insight into how GPT-4
identifies, personalizes, and defines jargon terms. While this anal-
ysis was conducted within a lab setting with a small number of
samples and annotators, we believe some of our findings may be
useful for future iterations of this work, as well as for others seeking
to build similar tools to simplify information-dense documents for
the benefit of reporters.

For one, the model tends to overpredict jargon terms, no matter
the reader’s expertise, and in fact never returns an empty response.
This may not be as much of an issue for reporters as it may be for
scientists and researchers (as rid0 was in this study), but mecha-
nisms to build a more precise personalization system, such as by
offering more metadata about the reader or with prompt engineer-
ing to encourage empty responses where necessary, can still create
a smoother, less noisy reading experience for everyone. The fact
that the model still seems to preserve the relative differences in
how the two annotators identify jargon, combined with the moder-
ate to high recall for each annotator, signals that personalization
is a viable pursuit. A more extensive evaluation with practicing
reporters as well as functionality to adapt the LLM’s internal user
model based on feedback can lead to better, more tailored systems
in the future.

Inaccuracies remain an ongoing concern, at a 3-4% rate across
both tested approaches. On the one-hand, we can argue that veri-
fying information past the point of news discovery is part of the
process of science reporting, and that this may be analogous to
other claims that reporters need to fact-check (e.g., claims from
press releases and company blogposts). On the other hand how-
ever, we do want these tools to actually streamline the reading and
verification experience during news discovery, and counter the chal-
lenges of existing approaches. Potential solutions here range from
prompt and parameter engineering (e.g., reducing temperature
parameter to 0), to calibrating user expectations around the perfor-
mance of LLMs via specific disclaimers, to actually implementing
interface-based interventions (e.g., highlighting the uncertainty of
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words or tokens in LLM-generated text) as heuristics for reporters
to decide what they need to focus their attention on verifying. Em-
pirical studies are needed to test the effect of such approaches on
the efficiency of the reading and sense-making experience.

The quality of the generated definitions also paints a complex
picture: GPT-4 using only the abstract performs slightly better
than GPT-4 with RAG-based context from the fulltext, both in
accuracy and overall quality. One possible explanation is that the
RAG-based approachmay introduce noise by surfacing less relevant
information from the fulltext. However, it is still unexpected that
the abstract-based approach can generate comparable responses
for niche jargon terms, which are not always clearly defined in the
abstract alone. This raises questions about the source of information
used by the abstract-based model, as the human annotators often
needed to search the fulltext to verify the accuracy of the generated
definitions. We contend it could be an effect of GPT-4’s extensive
size and training data – a comparison of approaches with smaller
(and also more cost-effective) models may help clarify this. If the
model indeed relies more on prior knowledge from training data
rather than provided context, it may be unable to accurately define
jargon terms that emerged after the cutoff date for LLM model
pretraining, without fulltext context like from RAG.

The varying tie percentages for both annotators in Table 1 also
suggest that different aspects of the RAG or abstract-based defini-
tions may appeal to readers differently, depending on their subject-
matter expertise. Another hypothesis, albeit without statistical back-
ing, is that some termsmay benefit from a definition strung together
from different parts of the abstract, or from latent associations en-
coded in LLM weights during training, while others may require
more detailed or specific context from the fulltext. This may de-
pend on a reader’s expertise, but also on a jargon term’s importance
to the paper’s contribution and findings. For example, in a paper
about reducing the security vulnerabilities of some hardware design
plans, jargon referring to a programming language in reference to
research methods (e.g., "SystemVerilog") might require less expla-
nation than a conceptual jargon term about the research question
itself (e.g.,"CommonWeakness Enumerations")6. Future work could
involve developing heuristics to determine when a jargon term
might require lookup within the fulltext versus not, based on the
reader, on how important the term is to an article’s contribution,
and how much detail the reader is interested in exploring (e.g., this
may also vary depending on feature-length vs. study stories).
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